Quiz 5, MATH 240, Fall 2023

Write your name clearly.

Name:

UID:

(1) (10 points) Let Ω be a region in \mathbb{R}^2 of area 3. If $A = \begin{pmatrix} 2 & 4 \\ 2 & 3 \end{pmatrix}$ is the standard matrix of the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$, determine the area of $T(\Omega)$ (*i.e.* the image of Ω under T).

Area of $T(\Omega) = |de+(A)| \cdot area(\Omega)$ = $|6 - e| \cdot 3$ = 6

(2) (10 points) Find the determinant of
$$A = \begin{pmatrix} 1 & 1 & 2 & 2 \\ 3 & 5 & 6 & 7 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & -1 & 2 \end{pmatrix}$$
.

Hint: you can do this without too many cofactors.

$$A| = \begin{vmatrix} 1 & 1 & 2 & 2 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & -1 & 2 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & 1 & 2 & 2 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & q \\ 0 & 0 & -1 & 2 \end{vmatrix}$$
$$= - \begin{vmatrix} 1 & 1 & 2 & 2 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & -1 & 2 \end{vmatrix}$$
$$= - \begin{vmatrix} 1 & 1 & 2 & 2 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & q \end{vmatrix}$$
$$= - (1) (1) (-1) (q)$$
$$= 18$$